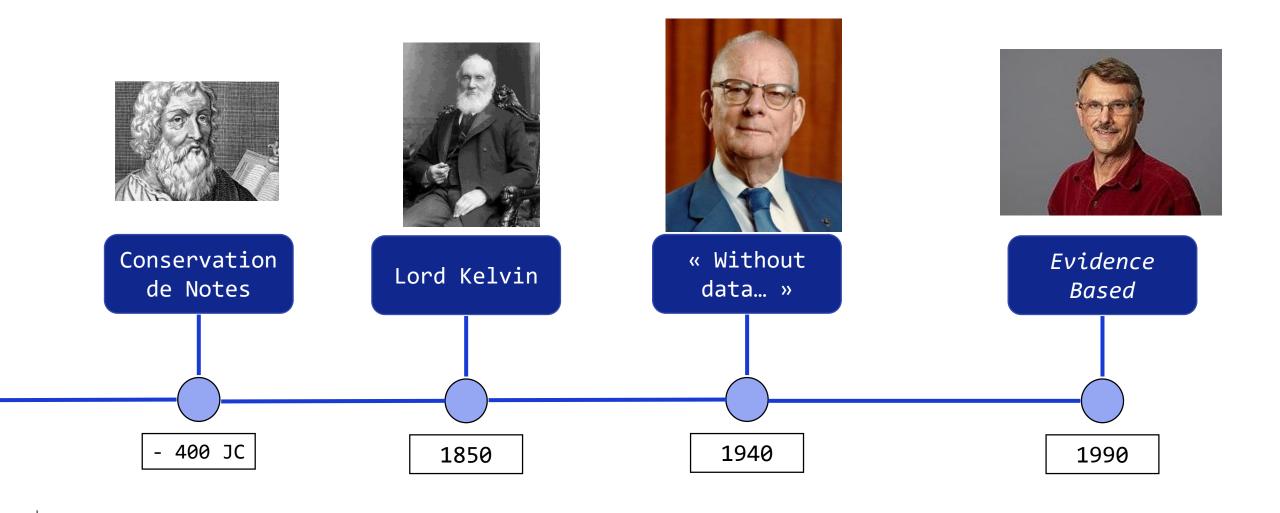


Liens d'intérêt

• Sanofi : Symposium JAMIR 2022


Introduction

_

De l'importance des données aux Données en nombre important

De l'importance des données

Age d'or de

l'Evidence Based Medicine

Données mesurées

Données de la science

Remise en question de l'Evidence Based Medicine

REVIEW ARTICLE

THE CHANGING FACE OF CLINICAL TRIALS

Jeffrey M. Drazen, M.D., David P. Harrington, Ph.D., John J.V. McMurray, M.D., James H. Ware, Ph.D., and Janet Woodcock, M.D., *Editors*

Evidence for Health Decision Making — Beyond Randomized, Controlled Trials

Thomas R. Frieden, M.D., M.P.H.

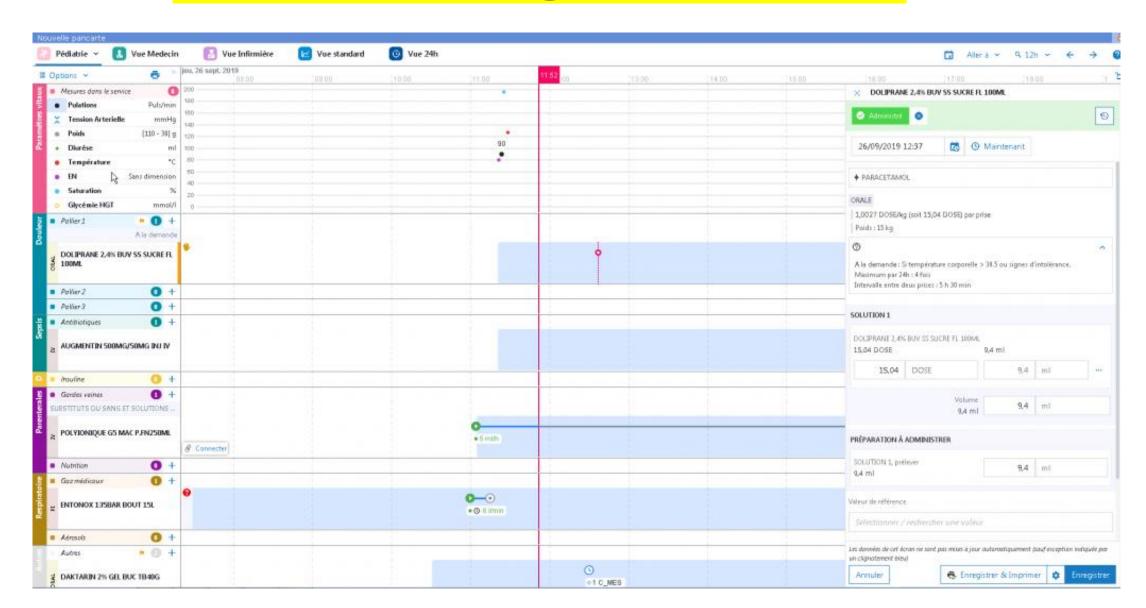
Limites de l'EBM

 Plus de 50% des recommandations sont issues d'études de niveau de preuve < B

Ebell et al. Evid Based Med. 2017

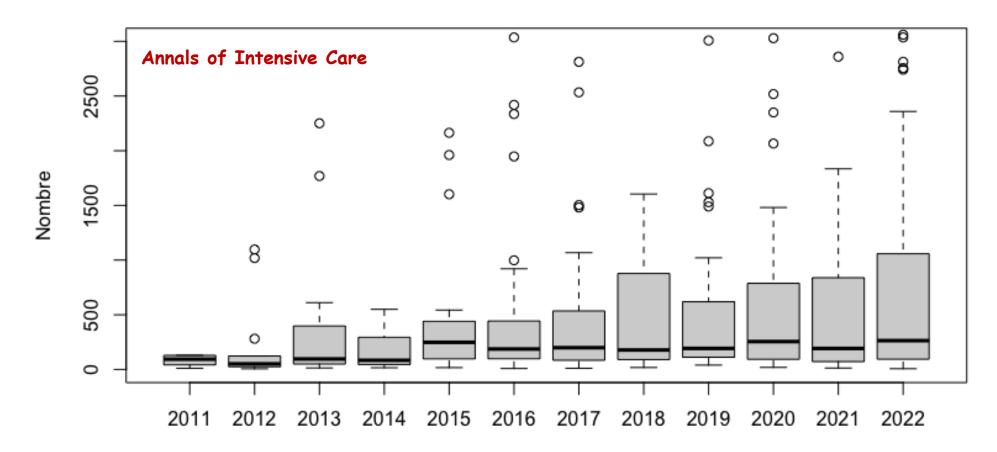
- Limites du gold standard essai clinique :
 - + Validité externe faible
 - + Coût de mise en œuvre
 - + Longueur de la durée d'étude
 - + Impossible à appliquer pour l'ensemble des hypothèses

Apports des logiciels métiers


• Initialement développés pour faciliter l'accès à l'information patient

• Extension :

- + Outils de prescription
- + Surveillance des paramètres hémodynamiques
- + Résultats biologiques
- + Tendance physiologique
- + Analyses statistiques



Apports des logiciels métiers

Reconsidération des études observationnelles

- Auparavant limités aux études physiologiques
- Etudes considérées « pragmatiques » / « from real data »

Un sujet plus que d'actualité

Article Open Access

Christo

Laurent

Définition

_

La règle des 5 V's

Volume

• Quantité de données disponibles

- Base du Big Data :
 - + Taille
 - + Quantité de données collectées

• Augmente avec les capacités de stockage

Variété

• Eventail possible de représentation des données

- 3 types de données :
 - + Structurées
 - + Semi structurées
 - + Non structurées

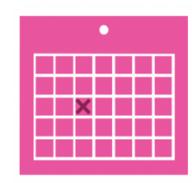
Valeur

• Potentiel de valorisation des données

• Propriété majeur pour le domaine des affaires

- Médical :
 - + Potentiel et impact des analyses sur les pratiques

Vitesse



• Flux de données

• Cinétique pour générer et et transferer les données au sein des unités de stockage

Véracité

• Fiabilité des données recueillies

• Confère le degré de qualité des données

Définition

Collecte des données de réanimation

Туре	Densité	Exemple
Démographiques	1 mesure	Age, genre, BMI, comorbidités
Biologie sanguine	1 – 3 / jour	Ionogramme, Hémogramme
Tests cutanés	0 – 1 / heure	Glycémie
Analyse gazométrique	1 – 12 / jour	pH, PaO2, PaCO2, Lactate
Radiologie au lit	2-7 / semaine	Radio thoracique
Imagerie avancée	0-3 / semaine	TDM, IRM, Echographie
Microbiologie	1-5 / semaine	Cultures
Monitoring intermittent	0.5 – 12 / heure	PA brassard, diurèse
Monitoring continu	1 – 30 / seconde	ECG, SpO2, PA invasive, FR
Paramètres ventilatoires	1 – 20 / jour	Mode ventilatoire, PEER, PPI
Dose médicamenteuse IVD	1 – 6 / jour	Antibiotique, IPP, steroïdes
Administration continue	1 / minute	Vasopresseurs, sédation, fluides
Evaluation clinique	3 – 12 / jour	Transmission médicale et IDE
Intervention	0 – 5 / semaine	Admission, sortie, CVC, chirurgie

Туре	Densité	Exemple
Démographiques	1 mesure	Age, genre, BMI, comorbidités
Biologie sanguine	1 – 3 / jour	Ionogramme, Hémogramme
Tests cutanés	0 – 1 / heure	Glycémie
Analyse gazométrique	1 – 12 / jour	pH, PaO2, PaCO2, Lactate
Radiologie au lit	2 - 7 / semaine	Radio thoracique
Imagerie avancée	0-3 / semaine	TDM, IRM, Echographie
Microbiologie	1-5 / semaine	Cultures
Monitoring intermittent	0.5 – 12 / heure	PA brassard, diurèse
Monitoring continu	1-30 / seconde	ECG, SpO2, PA invasive, FR
Paramètres ventilatoires	1 – 20 / jour	Mode ventilatoire, PEER, PPI
Dose médicamenteuse IVD	1 – 6 / jour	Antibiotique, IPP, steroïdes
Administration continue	1 / minute	Vasopresseurs, sédation, fluides
Evaluation clinique	3 – 12 / jour	Transmission médicale et IDE
Intervention	0 – 5 / semaine	Admission, sortie, CVC, chirurgie

Туре	Densité	Exemple
Démographiques	1 mesure	Age, genre, BMI, comorbidités
Biologie sanguine	1 – 3 / jour	Ionogramme, Hémogramme
Tests cutanés	0 – 1 / heure	Glycémie
Analyse gazométrique	1 – 12 / jour	pH, PaO2, PaCO2, Lactate
Radiologie au lit	2-7 / semaine	Radio thoracique
Imagerie avancée	0-3 / semaine	TDM, IRM, Echographie
Microbiologie	1 - 5 / semaine	Cultures
Monitoring intermittent	0.5 – 12 / heure	PA brassard, diurèse
Monitoring continu	1-30 / seconde	ECG, SpO2, PA invasive, FR
Paramètres ventilatoires	1 – 20 / jour	Mode ventilatoire, PEER, PPI
Dose médicamenteuse IVD	1 – 6 / jour	Antibiotique, IPP, steroïdes
Administration continue	1 / minute	Vasopresseurs, sédation, fluides
Evaluation clinique	3 – 12 / jour	Transmission médicale et IDE
Intervention	0 – 5 / semaine	Admission, sortie, CVC, chirurgie

Туре	Densité	Exemple
Démographiques	1 mesure	Age, genre, BMI, comorbidités
Biologie sanguine	1 – 3 / jour	Ionogramme, Hémogramme
Tests cutanés	0 – 1 / heure	Glycémie
Analyse gazométrique	1 – 12 / jour	pH, PaO2, PaCO2, Lactate
Radiologie au lit	2-7 / semaine	Radio thoracique
Imagerie avancée	0-3 / semaine	TDM, IRM, Echographie
Microbiologie	1 – 5 / semaine	Cultures
Monitoring intermittent	0.5 - 12 / heure	PA brassard, diurèse
Monitoring continu	1 – 30 / seconde	ECG, SpO2, PA invasive, FR
Paramètres ventilatoires	1 – 20 / jour	Mode ventilatoire, PEER, PPI
Dose médicamenteuse IVD	1 – 6 / jour	Antibiotique, IPP, steroïdes
Administration continue	1 / minute	Vasopresseurs, sédation, fluides
Evaluation clinique	3 – 12 / jour	Transmission médicale et IDE
Intervention	0 – 5 / semaine	Admission, sortie, CVC, chirurgie

Туре	Densité	Exemple
Démographiques	1 mesure	Age, genre, BMI, comorbidités
Biologie sanguine	1 – 3 / jour	Ionogramme, Hémogramme
Tests cutanés	0 – 1 / heure	Glycémie
Analyse gazométrique	1 – 12 / jour	pH, PaO2, PaCO2, Lactate
Radiologie au lit	2-7 / semaine	Radio thoracique
Imagerie avancée	0-3 / semaine	TDM, IRM, Echographie
Microbiologie	1-5 / semaine	Cultures
Monitoring intermittent	0.5 – 12 / heure	PA brassard, diurèse
Monitoring continu	1-30 / seconde	ECG, SpO2, PA invasive, FR
Paramètres ventilatoires	1 – 20 / jour	Mode ventilatoire, PEER, PPI
Dose médicamenteuse IVD	1 – 6 / jour	Antibiotique, IPP, steroïdes
Administration continue	1 / minute	Vasopresseurs, sédation, fluides
Evaluation clinique	3 – 12 / jour	Transmission médicale et IDE
Intervention	0 - 5 / semaine	Admission, sortie, CVC, chirurgie

56 h

Définition

Stockage des données

Système de stockage

- Technologie spécifiques pouvant gérer des volumes massifs de données
- Système de stockage :
 - + Stockage distribués
 - Données réparties sur plusieurs serveurs
 - + Bases de donnés NoSQL
 - Base pour données non structurées ou semi-structurées

Traitement des données

- Framework :
 - + Ensemble d'outils et de composants logiciels
 - + Open source : accès libre
 - + Développement collaboratif et communautaire
 - + Exemple: Hadoop (Java), Spark (Python)

Machine Learning

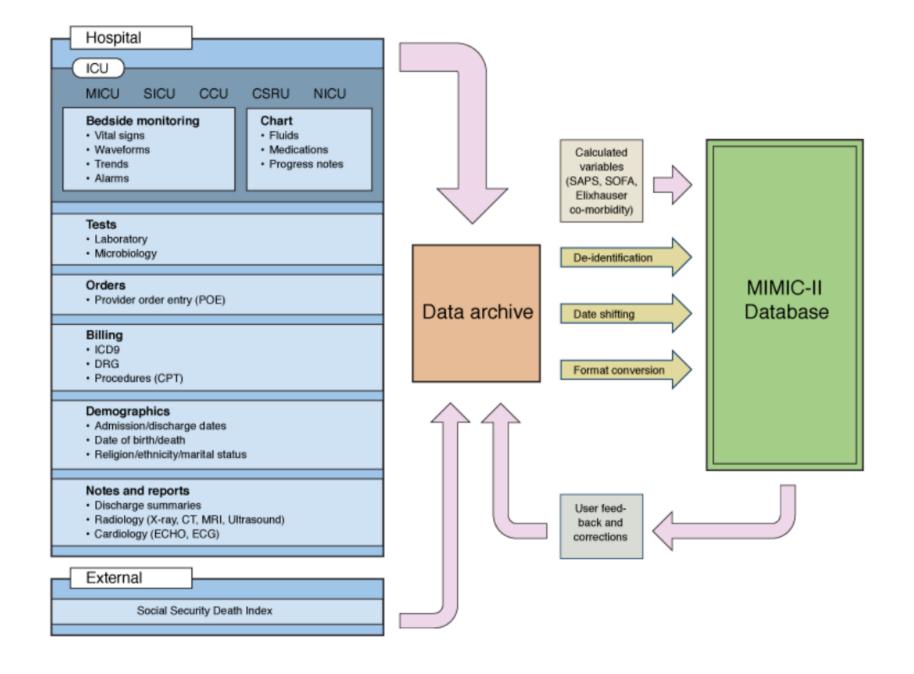


FIGURE 1: SCHEMATIC DESCRIPTION OF DATA COLLECTION AND MIMIC-II DATABASE CONSTRUCTION.

Avantages

Le Big Data : Frime ou vrai plus ?

Pourquoi s'embêter?

• Statistiques paramétriques :

• Statistiques non paramétriques :

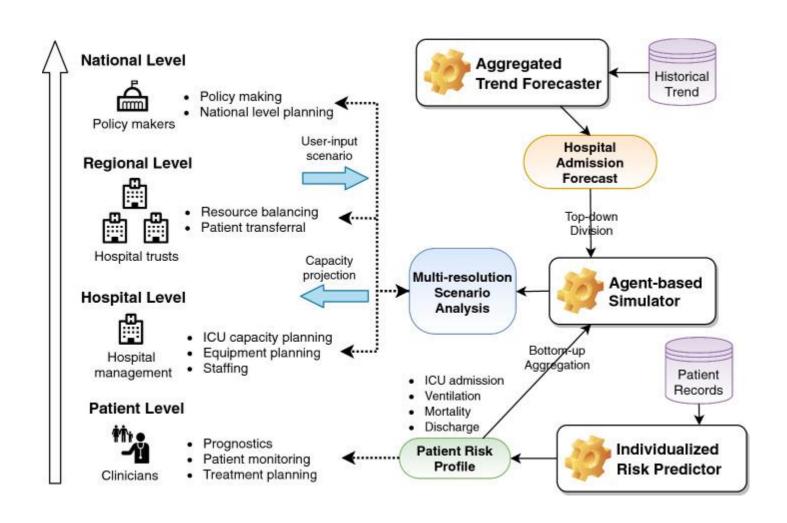
Pourquoi s'embêter?

- Statistiques non paramétriques :
 - + On s'amende de la distribution -> Modèles plus robustes
 - + Vitesse de convergence plus lente -> Techniques moins puissantes
 - Augmenter la Puissance = Augmenter le nb d'observation

+ Parfaitement adapté au Big Data

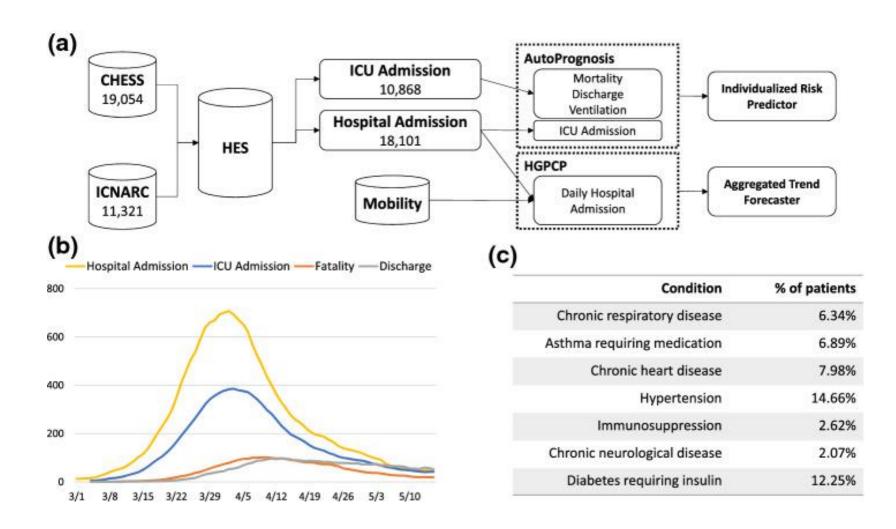
Apports du Big Data

Partage d'informations Actualisation en temps réel



U-M experts leverage the power of data, innovative research and health policy expertise to address the impacts of the COVID-19 pandemic.

Organisationnel



Qian et al. Mach Learn. 2021

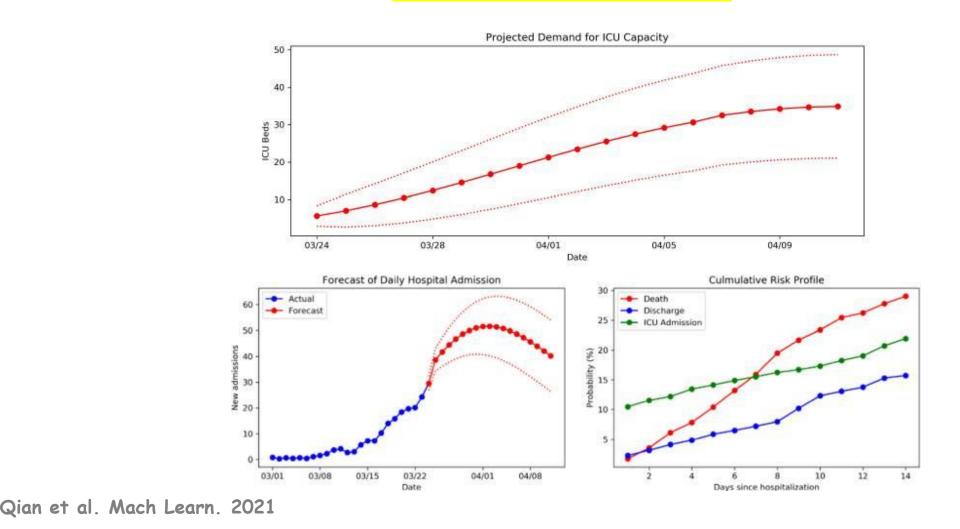
Organisationnel

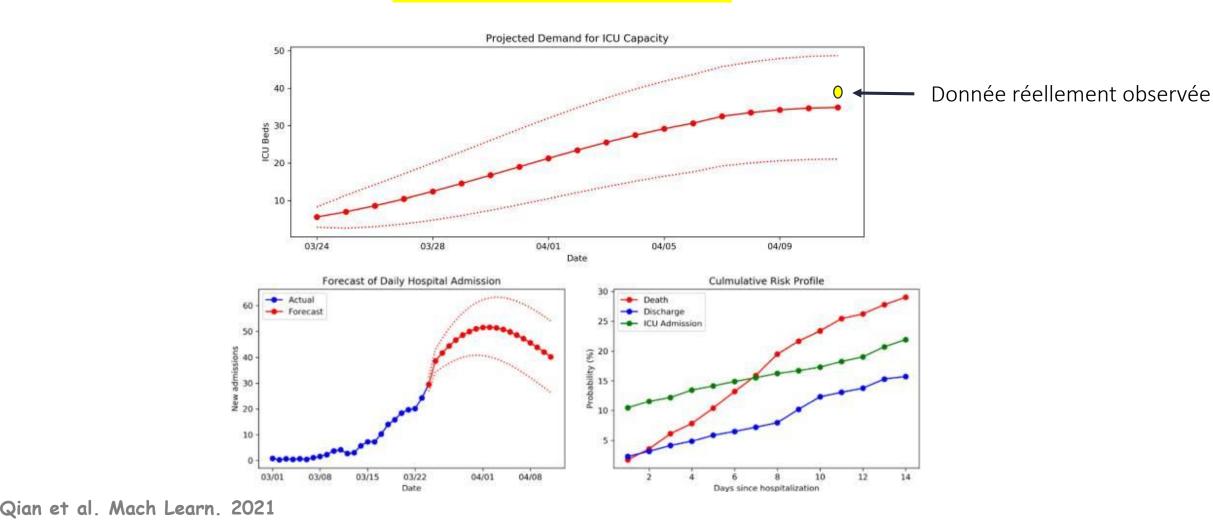
Organisationnel

Model	Feature	ICU admission	Mortality	Ventilation
AutoPrognosis	All features	0.835 ± 0.001	0.871 ± 0.002	0.771 ± 0.002
AutoPrognosis	CHESS only	0.781 ± 0.002	0.836 ± 0.002	0.754 ± 0.003
AutoPrognosis	Demographics	0.770 ± 0.002	0.799 ± 0.003	0.702 ± 0.003
Cox PH Model	All features	0.771 ± 0.002	0.773 ± 0.003	0.690 ± 0.003
Charlson index	_	0.556 ± 0.013	0.596 ± 0.002	0.530 ± 0.006

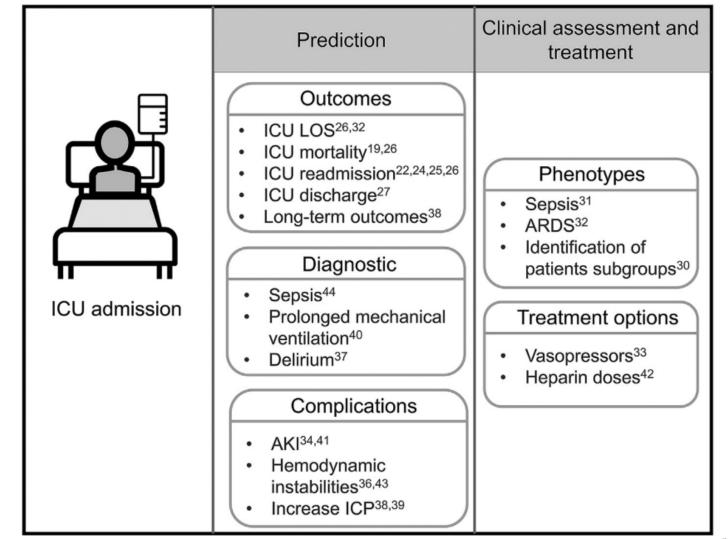
Qian et al. Mach Learn. 2021

Hôpital Londonien


23 Mars 2020



Qian et al. Mach Learn. 2021


Hôpital Londonien 23 Mars 2020

Hôpital Londonien 23 Mars 2020

Au niveau patient

Objectif: Médecine Personnalisée

Combining Prognostic and Predictive Enrichment Strategies to Identify Children With Septic Shock Responsive to Corticosteroids*

Precision Glycemic Control in the ICU*

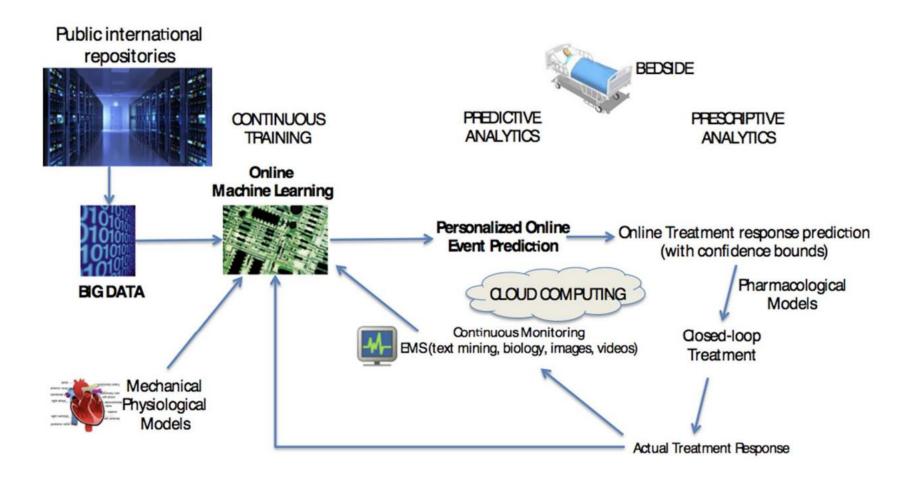
Paul E. Marik, MD, FCCM, FCCP
Division of Pulmonary and Critical Care Medicine
Eastern Virginia Medical School
Norfolk, VA

Wong, Hector R. MD^{1,2}; Atkinson, Sarah J. MD^{1,3}; Cvijanovich, Natalie Z. MD⁴; Anas, Nick MD⁵; Allen, Geoffrey L. MD⁶; Thomas, Neal J. MD⁷; Bigham, Michael T. MD⁸; Weiss, Scott L. MD⁹; Fitzgerald, Julie C. PhD, MD⁹; Checchia, Paul A. MD¹⁰; Meyer, Keith MD¹¹; Quasney, Michael MD, PhD¹²; Hall, Mark MD¹³; Gedeit, Rainer MD¹⁴; Freishtat, Robert J. MD¹⁵; Nowak, Jeffrey MD¹⁶; Raj, Shekhar S. MD¹⁷; Gertz, Shira MD¹⁸; Lindsell, Christopher J. PhD¹⁹

Distinct Molecular Phenotypes of Direct vs Indirect ARDS in Single-Center and Multicenter Studies

Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study

Emma E Davenport, Katie L Burnham*, Jayachandran Radhakrishnan*, Peter Humburg, Paula Hutton, Tara C Mills, Anna Rautanen, Anthony C Gordon, Christopher Garrard, Adrian V S Hill, Charles J Hinds, Julian C Knight

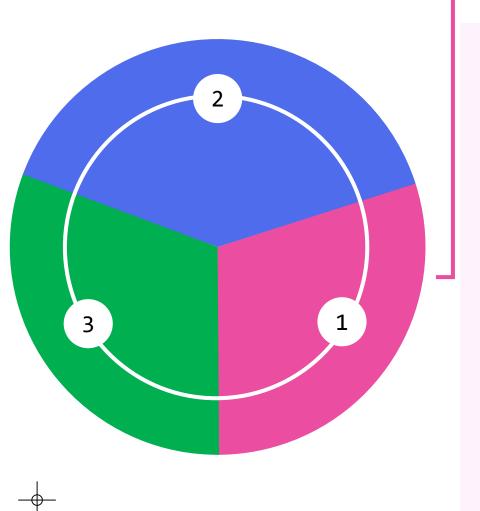

Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy

Katie R. Famous¹, Kevin Delucchi², Lorraine B. Ware^{3,4}, Kirsten N. Kangelaris⁵, Kathleen D. Liu^{6,7}, B. Taylor Thompson⁸, and Carolyn S. Calfee^{1,7}; for the ARDS Network

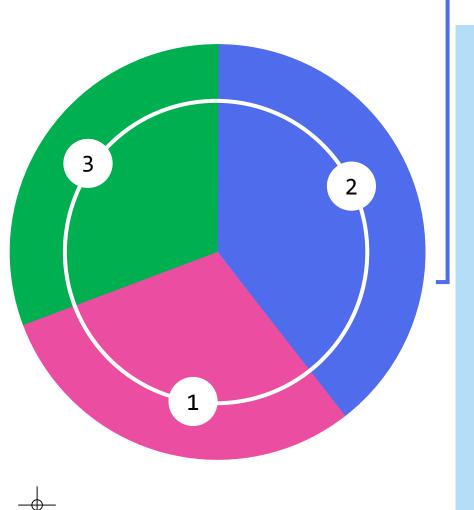
From Predictive to Prescriptive

Analytics

Défis


Pourquoi le Big Data n'est pas encore massivement déployé?

Confidentialité

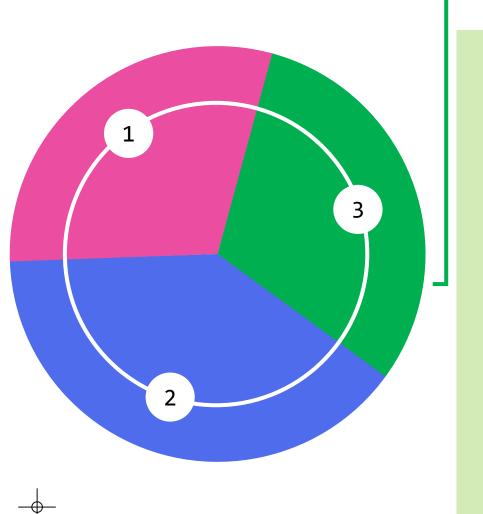


Les données de santé sont des données convoitées

Fuites concernant 1,4 millions de patients à l'APHP en 2020

Données revendues : industriels, assurance, gouvernement

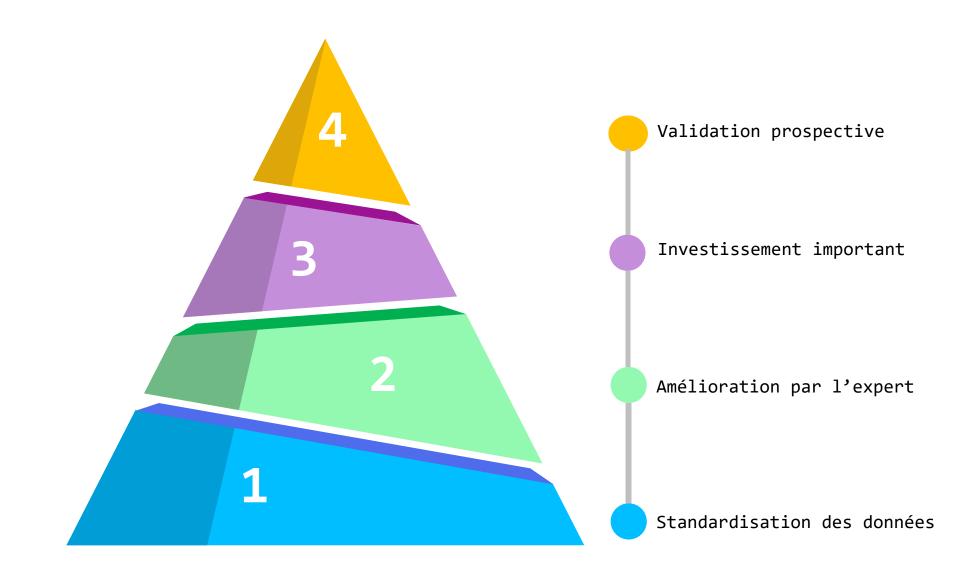
Fiabilité



Données volumineuses et hétérogènes

Qualité varie selon la source

Manque de standardisation de la collecte


<u>Analyse</u>

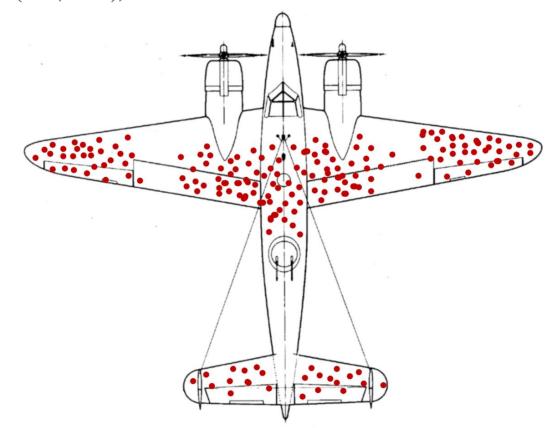
Intégration complexe lié à la **multitude** de sources et de format des données

Interprétation des résultats d'analyse parfois **complexe**

Validité externe compromise par le défaut de standardisation

Limites

La science des données doit rejoindre les données de la science


Je ne crois ce que je vois

Abraham Wald's Work on Aircraft Survivability

Marc Mangel, Francisco J. Samaniego

Journal of the American Statistical Association, Volume 79, Issue 386 (Jun., 1984), 259-267.

Ne pas changer de paradigme mais le faire évoluer

- La science des données n'est pas « magique » et implique d'être complémentaire du schéma EBM actuel
 - + Les résultats doivent être reproductibles
 - + Démonstration d'une plus value de façon prospective
 - + Justification physiopathologique

 Les futurs outils digitaux doivent être considérés comme des outils thérapeutiques

Conclusion

-

Le Big Data va révolutionner nos pratiques...

... dès lors que les limites seront franchies

- Changement de paradigme avec le développement d'une médecine :
 - + Personnalisée plus que collective
 - + Prédictive plus qu'interventionnelle

• A voir plus comme des médicaments 2.0 plus qu'une assistance

• Implication des médecins dans le développement des outils

